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A fully bottom-up algorithm for extracting blobs in building facades is proposed. 
Prototype discovery, hypothesis testing and verification are used to identify missing 
blobs or split the agglomerated ones, when repeated patterns are present in the facade. A 
novel similarity measure is used for assessing the similarity of subpatterns. The 
proposed algorithm can detect 80% of the 3589 hand segmented components in 300 
images.

                  1. Introduction 

The eTRIMS1 project is concerned with the 
automatic identification of building parts, with 
the ultimate aim to be incorporated in a tool 
that constructs 3D models of cities. In this 
paper, we present a methodology for 
identifying the subparts of a building facade, 
including windows, doors, chimneys, 
balconies, dormers and canopies as blobs that 
will then be presented to a higher level module 
for classification. For this purpose, our system 
is totally automatic and totally bottom up. 

 

2. Methodology 

In the first stage we apply an interest operator 
for enhancing blob-shaped structures in the 
image. We use thresholding, morphological 
operators and connected component analysis 
to extract blobs from the constructed map. The 
first step of the algorithm is fully automated, 
but it constitutes a straight forward image 
processing methodology and we do not discuss 
it here due to lack of space. Two example 
outputs of the results of the preliminary blob 
extraction are shown in Fig 1.  
The main contribution of this paper is in the 
steps which use the preliminary regions as 
input and automatically recognize the presence 
of repeated structures and subsequently 
identify the missed ones or split the 
agglomerated ones. In the following sections 
we present these steps in more detail.  

                                                 
1 http://www.ipb.uni-bonn.de/projects/etrims/ 
 

 

 
Fig 1:  Examples of the output of the first step of the 
algorithm. Note that some parts are missed or 
agglomerated. 

2.1. Prototype Discovery 

Our task here is to recognize automatically the 
presence of repeated structures. To achieve 
that, we first create a binary map that contains 
all the extracted blobs. Then we perform a sort 
of autocorrelation as follows. 

 

1. If the image is N×M, create an empty grid of 
size 2N×2M, say Cor. 

2.  Shift the binary image so as the centre of 
each extracted region coincides with the 
centre of Cor in turn, and accumulate the 
values 

3. Identify the peaks of matrix Cor. Each peak 
in association with the centre of the grid 
constitutes a possible prototype. 

The Cor matrix which is created in this way is 
very noisy. This is due to various reasons 
including i) fragments of regions of interest 
extracted instead of full regions, ii) incorrect 
blobs extracted and iii) perspective effects. So, 
for peaks to be identified in these maps, some 
smoothing has to be first applied. From the 
blobs which have already been extracted, we 
create the histogram of the areas of the 
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extracted regions and identify the mode of the 
area. The mode area is defined as the average 
area of the blobs that fall in the most populated 
bin. Let us call it Am. We then use an 
averaging window of size 

� � � �5.05.0 +×+ mm AA  to smooth the 

corresponding Cor map. 
After smoothing the Cor map, the local 
maxima are identified. We search for different 
local maxima in four different directions by 
considering the local maxima in 4  non-
overlapping angular bins with 22.5° tolerance, 
and with respect to the centre of matrix Cor, 
about the horizontal and vertical mean 
directions.  Let us consider two vectors, say 

a
�

and b
�

  which are emanating from the centre 
of matrix Cor, pointing to the nearest local 
maxima with respect to the centre. These 
vectors are accepted as a discovered prototype 
if: 
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where aP�  and 

b
P�  are the values of the points 

of matrix Cor  to which vectors a
�

 and b
�

 are 
pointing. In our experiments we chose 1T and 

2T  to be equal to 0.9 and 0.1, respectively. 
These criteria mean that the central point and a 
neighboring maximum are accepted as 
forming a prototype if there is a symmetrically 
placed maximum of roughly equal strength on 
the other side of the central point. Discovered 
prototypes from the extracted regions of image 
shown in Fig 4a is shown in Fig 2b. It is note 
worthy to underline that in the case that there 
is no prototype in the extracted regions, we do 
not proceed and no more regions may be 
extracted from the building facade. 
 

 
      

 (a)            (b)  
 
Fig  2:  The discovered prototypes of  the extracted regions in 
(a) are shown by the lines emanating from the centre of the 
Cor  map in (b). 

2. 2   Hypothesis Generation and a new 
Region Similarity Measure 

A prototype we discovered from the extracted 
regions may be used to locate regions in the 
original image similar to those that have been 
already extracted. In other words, once we 
know where to look to find a region similar to 
one we already identified, we have to verify its 
existence by using a similarity measure. We 
consider that the images we wish to compare 
may be dissimilar in some details, but similar 
in their overall appearance. For example, we 
would like to discover a hypothesized window 
paired through prototype discovery with an 
already identified one, even if this second 
window is open or has its shutter closed or has 
a curtain. So, what we would like to compare 
between an already identified region and a 
hypothesized one is the basic appearance 
rather than the detail.  
Therefore, we introduce a similarity measure 
based on the eigenimages of two subimages. 
We first decompose the two regions, which we 
want to compare, into their eigenimages, using 
singular value decomposition (SVD) [2]. Two 
subimages, say 1I  and 2I that we wish to 
compare may be written as: 
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where i
1λ  and i

2λ are the eigenvalues of square 

matrices TII 11  and TII 22 , respectively, and iu1  

and iu2  are the corresponding eigenvectors. 

Parameters 1r and 2r  are the ranks of the same 

matrices, and iv1  and iv2  are the eigenvalues of 

11 II T  and 22 II T . The eigenvalues in (5) are 
arranged in decreasing order, so successive 
approximations of the two subimages may be 
obtained by truncating these expansions by 
keeping only the first few terms. The similarity 
measure which we propose is: 
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where ⋅ is the norm operator. This criterion is 

bounded between 0 and 1 and the higher the 
value of SIM the more similar the two sub-
images are expected to be. Parameter α is 
used in order to avoid the saturation of the 
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exponential function. Some pilot experiments 
showed that for P×Q subimages 

),min( QP=α  restricts the saturation of the 
exponential function, satisfactorily. 
Furthermore, iE1  and iE2   are scaled to have 
values from 0 to1. 
In equation (6) parameter k can be used for 
determining to what extent the details of the 
two subimages have to match.  The more 
details have to match, the higher the required 
value of k. At the limit, where ),min( 21 rrk = , 
the two images have to match exactly. In 
section 4 we compare the performance of this 
similarity measure with the normalized mutual 
information and the correlation coefficient.  

3.5 Hypothesis Verification 

A generated hypothesis is verified as follows. 
1. Consider an initially extracted region, say 

A , in the original image. 
2. Consider one of the discovered vectors 

connecting the centers of the regions that 
form prototypes. 

3. Around the position pointed by the vector, 
which starts from the centre of regionA , 
consider in the original image a region, say 
B, of the same size as regionA . 

4. If region B corresponds to one of the 
previously extracted regions, then ignore it 
and consider another extracted region and 
go to step 2. Otherwise go to the next step. 

5. Compute the similarity measure between A  
and B. 

6. If the similarity betweenA  and B  is more 
than a threshold, T, then consider B  as a 
new region of interest.      

7. Consider all extracted regions (including the 
new ones) and repeat steps 2 to 6 until no 
more hypothesized regions are verified.  

   
Threshold T is selected as follows. 
For each image we consider all pairs of 
initially extracted regions which are placed in 
relation to each other according to the 
discovered prototypes. Let us assume that 
there are P pairs of such regions. Next, we 
select as threshold of similarity the X 
percentile of the distribution of the similarity 
values. To identify this, we sort the similarity 
values in an ascending order. We then consider 
as threshold the value that corresponds to the 

region at position� �5.0+XP . For example, let 

us say that we have 73=P  pairs of regions. 
For 25.0=X , the threshold we shall use will 
be the similarity of the 18th pair, since 

� �185.07325.0 =+× . A region that is more 

similar to a given region by this threshold is 
postulated as a true region of interest. 
After generating new regions, the overlapping 
regions are removed. 

4. Experimental Results 

For evaluating the performance of the 
proposed algorithm, 300 images of building 
facades were used. These images were 
annotated by the contribution of 10 persons 
and are freely available in [1]. 
Two different experiments are presented in 
this section. In the first part we evaluate the 
performance of different similarity measures 
in the hypothesis verification stage of the 
algorithm. Next we evaluate the performance 
of the algorithm in detecting subparts of 
building facades. 
Hypothesis verification: Prior to comparing 
different similarity measures, we first consider 
the performance of the proposed similarity 
measure (6) as a function of the eigenimages 
retained. The ROC curves for different number 
of eigenimages turned out to be very similar. 
The curves were constructed by varying the 
percentile X used for deciding the similarity or 
not of the two compared sub-images. So, we 
select to use only one eigenimage. 
Next, we construct the ROC curve of the 
proposed similarity measure as well as that of 
the correlation coefficient and the normalised 
mutual information, as shown in Fig 3. It can 
be seen that the proposed similarity measure 
has better performance in comparison with the 
correlation coefficient and the normalized 
mutual information for our specific task.  
Evaluating the performance of the algorithm: 
In this part we evaluated the performance of 
the proposed methodology in detecting 
subparts of building facades. We compared the 
results of the proposed algorithm with hand 
segmented images of [1].  The segmented 
regions which we included in our experiments 
are windows, doors, chimneys, dormers, 
balconies and canopies. For testing whether an 
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extracted region corresponds to a segmented 
image or not, we define: 
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Fig 3: Comparing the ROC curves of different image 
similarity measures 

 where R is the set of pixels which belong to 
an extracted region of interest, and S is the set 
of pixels which make up a hand segmented 
region of interest. If O is more than 0.6 then 
we infer that the region of interest corresponds 
to one of the subparts of the building facade.  
The results of this experiment are listed in 
table 1 according to category, although our 
algorithm does not identify the class of each 
region. Some results are shown in Fig 4. 
 
Table 1: Results of comparing the proposed  
methodology with the hand segmented images 
 

Regions Number of regions Blob extraction 
Window 3295 82% 
Door 109 56% 
Chimney 55 35% 
Dormer 75 74% 
Canopy 30 33% 
Balcony 25 75% 
All Regions 3589 79.8% 

 

     5. Conclusions 

In this paper we proposed a fully bottom up 
approach for extracting blobs in images of 
building facades. Preliminary blobs are 
recognized using some image processing 
techniques. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4. Bounding boxes of identified blobs are shown in white. 

 
Prototype discovery, hypothesis generation 
and verification are used to identify any 
missed blobs or split the agglomerated ones 
when repeated patterns are present in an 
image. A novel similarity measure is proposed 
for assessing the similarity of subpatterns. We 
evaluated the performance of the proposed 
blob detection using 300 manually annotated 
images of building facades, containing more 
than 3500 subparts. Our experiments showed 
that about 80% of the hand segmented 
subparts were identified with the proposed 
methodology.  
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